

1 of 19

Software Engineers and Designers

NOC 2173

Introduction
Software engineers and designers research, design, evaluate, integrate and maintain software applications, technical
environments, operating systems, embedded software, information warehouses and telecommunications software.
They are employed in information technology consulting firms, information technology research and development
firms, and information technology units throughout the private and public sectors, or they may be self-employed.

The most important Essential Skills for Software Engineers and Designers are:

• Digital Technology
• Problem Solving
• Oral Communication

Document Sections
• Reading
• Document Use
• Writing
• Numeracy
• Oral Communication
• Thinking Skills

o Problem Solving
o Decision Making
o Critical Thinking
o Job Task Planning and Organizing
o Significant Use of Memory
o Finding Information

• Working with Others
• Digital Technology
• Continuous Learning
• Notes

2 of 19

A. Reading

Reading

Tasks

Typical

Most Complex

Complexity Level

2 to 5

5

Examples

Software Engineers and Designers:
• read emails from co-workers, colleagues, supervisors and

testers about requests for fixing issues that may include
technical information and possible solutions. (2)

• read discussion threads, and messages on ticketing
systems that help to plan out tasks. (2)

• read forums for information such as questions from the
developer or language specific problems. (3)

• read information from websites to research new
technology or technical information. (3)

• read customer reports about issues and bugs in electronic
files and source code to understand problems and how
they may have developed. (3)

• read contract agreements and service level agreements
outlining projected costs, timelines and responsibilities.
(3)

• read test reports from quality assurance that detail results
from software testing to ensure products meet customer
expectations. (3)

• read proposals and design specification documents to
understand project specifications. (3)

• read official documentation such as guidelines and
standards on languages, design and operating systems
(OS) as part of information gathering. (4)

• read software development kit (SDK) documentation to
learn how to use the software to develop applications for
specific devices or operating systems. (4)

• read software manuals and textbooks written by subject
matter experts to locate specific information, such as
troubleshooting or how to program a specific function.
These manuals require specialized programming
knowledge, and they may synthesize information from
several sources. (5)

3 of 19

Reading Summary
The symbols >, >> and >>> are explained in the Use of Symbols section.

 Purpose for Reading

Type of Text

To scan for
specific

information/To
locate

information

To skim
for overall

meaning, to
get the 'gist'

To read the
full text to

understand
or to learn

To read the
full text to
critique or
to evaluate

Forms >>>

Labels >>>
Notes,

Letters,
Memos

>>> >>> >>>

Manuals,
Specifications,

Regulations
>>> >>> >>>

Reports,
Books,

Journals
>>> >>> >>>

B. Document Use

Document Use

Tasks

Typical

Most Complex

Complexity Level

1 to 4

4

Examples

Software Engineers and Designers:
• scan lists identifying the various features to be included in

software. (1)

• locate work items or job tasks to be completed in
spreadsheets. Use spreadsheets for sign off requirements.
(2)

• refer to data sheets on hardware to understand the product.
(2)

• use graphical forms for timelines and planning
information. (2)

• may use flowcharts to outline more complicated
algorithms. (2)

• enter multiple pieces of information into project tracking
software. For example, they enter details about job tasks

4 of 19

that either need to be completed or have been completed.
(3)

• locate information in computer files, such as debugging
software (.gdb files) or source code. Read programming
language. Each language has its own function and codes.
(3)

• consult and synthesize information from technical
documents to develop software applications. They refer to
specifications that describe the application. (4)

Document Use Summary

• Read signs, labels or lists
• Complete forms by marking check boxes, recording numerical information or entering words, phrases,

sentences or text of a paragraph or more. The list of specific tasks varies depending on what was reported.
• Read completed forms containing check boxes, numerical entries, phrases, addresses, sentences or text of

a paragraph or more.
• Read tables, schedules and other table-like text.
• Create tables, schedules or other table-like text.
• Enter information on tables, schedules or other table-like text.
• Obtain specific information from graphs or charts.
• Interpret information on graphs or charts.
• Plot information on graphs (e.g., line, pie, bar).
• Obtain specific information from graphs or charts.
• Construct or draw graphs or charts.
• Obtain information from sketches, pictures or icons (e.g., computer toolbars).

5 of 19

C. Writing

Writing

Tasks

Typical

Most Complex

Complexity Level

2 to 4

4

Examples

Software Engineers and Designers:
• write emails to clients to give project updates, respond to

feedback or questions, and inform them of changes. These
emails may become part of customer reports. (2)

• write emails to software developers or colleagues using
technical terminology. Also may write emails to ask
colleagues for advice. (2)

• write lessons learned for self or colleagues as part of a
learning process. (3)

• write help files, and user and upgrade guides that explain
how to use programs and answer questions users may
have. (3)

• write software source code or technical comments on
coding to update, upgrade, or revise the design of the
product. For example, writing in language C++ or
JavaScript. (4)

• write “read me” files following established format and
syntax. For example, read me files include configuration,
installation, and operating instructions, and
troubleshooting information. (4)

• write project documentation that details the order of tasks,
problems encountered, and causes of problems. This
information is used by the project team, new team
members, and the team manager as ongoing
documentation of the project. The documentation may
include reports to managers. Larger projects involve more
paperwork and writing to share with stakeholders. (4)

• write test reports, quality assurance reports, design
documents, and status reports. For example, quality
assurance reports summarize the quality of the software
and provide details about the testing techniques and
procedures used to test the software. Design documents
explain how the software will be designed and its
functionality. Status reports detail progress made,
problems encountered and how they were solved, and next
steps. (4)

6 of 19

Writing Summary
The symbols >, >> and >>> are explained in the Use of Symbols section.

 Purpose for Writing

Length

To
organize/

to
remember

To keep a
record/to
document

To inform/
to request

information

To
persuade/
to justify

a
request

To present
an analysis

or
comparison

To
present

an
evaluation

or
critique

To
entertain

Text
requiring
less than

one
paragraph

of new
text

>>> >>> >>>

Text
rarely

requiring
more

than one
paragraph

>>> >>> >>>

Longer
text >>> >>> >>> >> >> >>

D. Numeracy
The symbols >, >> and >>> are explained in the Use of Symbols section.

Numeracy

Tasks
>>
Scheduling,
Budgeting &
Accounting

>>>
Measurement and
Calculation

>>>
Data Analysis

Complexity Level

3

5

4

Examples
Software Engineers and Designers:
• may develop budgets for projects. They calculate costs

such as hours, resources and overhead. For example, they
calculate the cost of contractors by multiplying the rate
times the number of hours. They determine if more
resources are needed for a project, if overtime is needed,
or if the project needs to be reduced in scope. (Scheduling,
Budgeting &Accounting), (3)

• schedule tasks on a daily, weekly and monthly basis for
team members and others including production teams and
testing groups. They adjust schedules to accommodate
unforeseen events and to meet deadlines. (Scheduling,

7 of 19

>>
Numerical
Estimation

2

Budgeting &Accounting), (3)

• apply mathematics, computer science and engineering
skills to design, develop and test software applications.
For example, they write and use algorithms and
logarithmic functions to sort data or solve a problem. They
use calculus, linear algebra and discrete mathematics.
(Measurement and Calculation), (5)

• conduct summary calculations and use statistics and
probability to analyze and mine data, and to develop
forecasts using statistical analysis software. For example,
they use statistical software to calculate arithmetic means
for high-level analysis of test data to present to
management. (Data Analysis), (4)

• make estimations when planning for time and scheduling
for a project. (Numerical Estimation), (2)

Math Skills Summary
a. Mathematical Foundations Used
The symbols >, >> and >>> are explained in the Use of Symbols section.

Mathematical Foundations Used

Code Tasks Examples
 Number Concepts
>>> Whole Numbers Read and write, count, round off, add or subtract, multiply or divide

whole numbers.
For example, when writing algorithms and logarithms.

>>> Integers Read and write, add or subtract, multiply or divide integers.
For example, when writing algorithms and logarithms.

 Patterns and Relations
>>> Equations and

Formulae
Solve problems by constructing and solving equations with one
unknown; use formulae by inserting quantities for variables and
solving; write, simplify and solve two variable algebraic problems;
write, simplify and solve quadratic equations.
For example, they write and use algorithms and logarithmic functions
to sort data or solve a problem, such as programming audio controls.

 Statistics and Probability
>>> Summary

Calculations
Calculate averages.
For example,
Use tables, schedules or other table-like text.
Use graphical presentations.
For example, they use arithmetic mean to conduct high-level analysis
of test data. They use random-number utilities to ensure randomness.

8 of 19

They measure the average CPU usage using parameters such as
processor speed and available memory. They may calculate the
number of computer instructions that can be executed in a given time.

>>> Statistics and
Probabilities

Use descriptive statistics (e.g. collecting, classifying, analyzing and
interpreting data).
Use inferential statistics (e.g. using mathematical theories of
probability, making conclusions about a population or about how
likely it is that some event will happen).
For example, they use statistical analysis software to analyze and mine
data, and to develop forecasts. They create and use logic and truth
tables to analyze statements to verify whether or not they are logical
or true.

b. How Calculations are Performed

• In the worker’s head.
• Using a calculator.
• Using a computer.

c. Measurement Instruments Used
• Time using a watch or clock.

E. Oral Communication

Oral Communication

Tasks

Typical

Most Complex

Complexity Level

2 to 3

3

Examples
Software Engineers and Designers:
• attend meetings with developers to report project updates,

discuss issues and how they can be resolved, ask
questions, and report project status. (2)

• attend meetings to discuss assignment of tasks and ideas
for completing tasks. (2)

• adjust language when speaking to different people. For
example, they speak in less technical language when
speaking to managers. They ask questions to get a sense of
project requirements or obtain information such as login
passwords. They also obtain requirements requested by the
product manager. They use technical language when
speaking with engineers, and must be tactful when
answering questions, providing or asking for help. (2)

9 of 19

• attend meetings with co-workers, colleagues, and
supervisors to solve software related problems, to discuss
new developments, and to gather and receive information
about projects. For example, they brainstorm for ideas to
solve problems with bugs or to discuss opinions and share
information. At the end of projects, they meet to analyze
how the project went and lessons learned. (3)

• may host meetings to facilitate the exchange of ideas
between subject matter experts. (3)

• may train, instruct and advise co-op students or junior
developers. For example, they make themselves available
to answer questions and demonstrate how to do
something, to show them how to plan and document tasks,
and to discuss ways of improving their skills. (3)

• meet clients face to face or by phone to discuss timelines,
or to clarify details of project requirements. (3)

• may make presentations to co-workers and managers to
share knowledge. For example, they may present current
projects or new technology. (3)

Modes of Communication Used

• In person. For example, speaking to colleagues about issues with the project.
• Using a telephone. For example, speaking with clients about project updates.
• Others. For example, video conferencing with clients.

Environmental Factors Affecting Communication
None reported.

10 of 19

Oral Communication Summary
The symbols >, >> and >>> are explained in the Use of Symbols section.

Purpose for Oral Communication (Part I)

Type To
greet

To take
messages

To
provide/receive

information,
explanation,

direction

To seek,
obtain

information

To co-
ordinate

work
with

that of
others

To reassure,
comfort

Listening (little or
no interaction) >>

Speaking (little or
no interaction) >>

Interact with co-
workers >>> >>> >>>

Interact with those
you supervise or

direct >> >> >>

Interact with
supervisor/manager >>> >>> >>>
Interact with peers
and colleagues from
other organization >> >> >>

Interact with
customers/clients/

public >> >>

Interact with
suppliers, servicers

Participate in
group discussion >>> >>> >>>

Present
information to a

small group >> >>

Present
information to a

large group

11 of 19

The symbols >, >> and >>> are explained in the Use of Symbols section.

Purpose for Oral Communication (Part II)

Type

To discuss
(exchange

information,
opinions)

To
persuade

To
facilitate,
animate

To instruct,
instill

understanding,
knowledge

To
negotiate,

resolve
conflict

To
entertain

Listening (little or
no interaction) >>

Speaking (little or
no interaction) >>

Interact with co-
workers >>> >>> >>> >>> >>>

Interact with those
you supervise or

direct
>> >>

Interact with
supervisor/manager >>>
Interact with peers
and colleagues from
other organization

>>

Interact with
customers/clients/

public
>> >> >> >>

Interact with
suppliers, servicers

Participate in
group discussion >>> >>> >>>

Present
information to a

small group
>> >> >>

Present
information to a

large group

12 of 19

F. Thinking Skills
1. Problem Solving

Problem Solving

Tasks

Typical

Most Complex

Complexity Level

2 to 4

4

Examples
Software Engineers and Designers:
• deal with communication and teamwork situations. With

large organizations, several people may be working on the
same project but the teams are not communicating
effectively with each other. (2)

• anticipate questions from clients, for example, asking how
to perform a specific task in the software. They may need
to make changes in features that already exist or create
new features. (3)

• figure out an appropriate design based on customer
requirements and existing software infrastructure. If
current software infrastructure is inadequate, they have to
figure out workarounds or solutions that might mean
rebuilding the infrastructure. (4)

• figure out how to clean up or rewrite code that someone
else wrote. If code has accumulated over a long period of
time, this could take several months. (4)

• troubleshoot and fix problems such as bugs or defects.
They consult with co-workers, run tests to determine
where problems are occurring, use debugging tools and
then retest. For example, they may use run time data. They
break down the problem into steps to give the machine
instructions and make sure that it runs. They may build a
prototype to troubleshoot problems. (4)

2. Decision Making

Decision Making

Tasks

Typical

Most Complex

Complexity Level

2 to 4

4

Examples
Software Engineers and Designers:
• may decide which tasks to assign to team members. They

consider individual skills and experience. (2)

• anticipate what needs to be done in a project during the
design stage. For example, they are given a spec and must
design something that fits that spec. They decide on tools

13 of 19

 to use. (2)

• decide where to make budget adjustments when there is
not enough to complete the project. They may reduce the
project scope, include overtime or hire more contractors.
(3)

• look at project plans, research the specs and technology, as
well as algorithms to determine if more resources are
needed. For example, if they have enough contractors or
require more to complete the project. (3)

• decide which software design to implement based on the
pros and cons of each. They may decide from several
design options that meet the customer’s requirements. For
example, the best technical solution might take more time
and require bringing in more consultants meaning delayed
delivery and higher costs. A quicker solution might
answer current needs but be harder to maintain in the long
run. (4)

3. Critical Thinking

Critical Thinking

Tasks

Typical

Most Complex

Complexity Level

2 to 4

4

Examples
Software Engineers and Designers:
• may evaluate quality of work done by co-workers and

junior team members. They may evaluate documentation
to ensure its adequacy, accuracy and clarity. (2)

• test, problem solve, and analyze software that may span
multiple software subsystems. For example, software that
has safety implications requires multiple checks. (4)

• evaluate design options. The goal is to address the needs
of the current customer with the best technical solution.
For example, they may have a solution for a customer
based on previous work. Or a customer may be asking for
particular features that, based on analyzing trends, will go
out of style in a short period of time. This may mean
developing a “quick and dirty” solution that will work for
now without investing a lot of resources and allow
technical staff to transition to the next generation of
products. (4)

14 of 19

4. Job Task Planning and Organizing

Job Task Planning and Organizing

Complexity Level
3

Description
Own job planning and organizing:
• Software engineers and designers plan job tasks independently.

They review priorities and revise the order of job tasks in response
to requests from managers and other members of the team, or
modifications to the project.

Organizational planning:
• Software engineers and designers assign tasks to junior team

members. They may coordinate the activities of the development
team.

5. Significant Use of Memory

Examples
• remember where to find files on their computers.

• remember passwords and identification numbers.

• remember what issues were dealt with before and where the problem was fixed so there is a reference for how
to deal with similar situations.

• remember previous problems and programming bugs and use this information for problem solving.

• remember programming information and sequences.

6. Finding Information

Finding Information

Tasks

Typical

Most Complex

Complexity Level

3

3

Examples

Software Engineers and Designers:
• ask co-workers and members of other teams for

information on how to deal with issues. For example, they
inquire about bugging issues during team meetings,
exchange email to ask for advice, and ask questions about
programming code during professional development
presentations. (3)

• find information online. They ask for information from
Java user groups or system administrator user groups

15 of 19

about, for example, how to avoid system crashes. They
search for information online by using Google and visiting
forums to read about computer language specific
problems. (3)

• look up information on programming code while doing
regular programming. For example, they search technical
manuals, help desks, and other resources to troubleshoot
bugs and other defects. They search gdb files to find
solutions to problems with code. (3)

G. Working with Others

Working with Others

Complexity Level

3

Description
Software engineers and designers work as members of teams. They
coordinate and integrate their work with other software engineers and
designers, computer programmers, project managers, product
managers, sales engineers and others.

Participation in Supervisory or Leadership Activities
• participate in formal discussions about work processes or product improvement.

• have opportunities to make suggestions on improving work processes.

• monitor the work performance of others.

• inform other workers or demonstrate to them how tasks are to be performed.

• orient new employees.

• make hiring recommendations.

• make hiring decisions.

• select contractors and suppliers.

• assign routine tasks to other workers.

• assign new or unusual tasks to other workers.

• identify training that is required by, or would be useful for, other workers.

• deal with other workers’ grievances or complaints.

16 of 19

H. Digital Technology
Digital Technology

Tasks

Typical

Most
Complex

Complexity
Level

2 to 5

5

Examples
Software Engineers and Designers:
• use communications software. For example, they exchange email

and attach documents with colleagues and clients to discuss
details on projects, set up meetings, and send customer reports.
(2)

• use applications that integrate video, voice and the sharing of data
in conferences and meetings. (2)

• use visual editors such as VI and Emacs that display the text being
edited on the screen. Editors have compilers that run the program
and transform the source file into a form that can be run (a binary
file). They may also use text editors such as Notepad, which is a
text-only editor. (2)

• visualize the design of a system using Unified Modeling
Language (UML) that gives a graphical representation of the final
version of the software. (2)

• use the Internet to search for information. For example, they use
Internet browsers to access vendor websites, and online trade
publications and forums for information on programming code
and guidelines on troubleshooting. They use platforms such as
SharePoint to integrate intranet content management and
document management. (3)

• use project management software such as JIRA and Microsoft
Projects to assign work and follow team activity, track bugs and
issues, and share files at their desktop or mobile. (3)

• use presentation software such as PowerPoint to create slide
shows for co-workers and customers. For example, they create
presentations for professional development with colleagues. (3)

• use word processing software such as Word to create, edit and
format documents such as project reports, and test reports,
memos, reference notes, procedures and schedules. (3)

• use statistical analysis software to analyze, interpret and mine
data, and to build analytical graphs, maps and charts. (4)

• develop and debug computer programs. For example, they use
integrated development environments (IDE) such as Eclipse and
QT Creator to develop code and debug errors, and IDE such as
Visual Studio to develop computer programs as well as web
applications. Software engineers and designers use source code
control systems to control changes and track the development of
source code. They use programming languages, such as
JavaScript, C++, and Ruby to develop computer programs such as

17 of 19

applications, utilities, servers and systems programs. (5)

Computer Use Summary
• use word processing

• use graphics software

• use databases

• use spreadsheets

• use communications software

I. Continuous Learning

Continuous Learning

Complexity Level

4

Description

Software engineers and designers are constantly learning new
skills because technology changes so quickly. They need to be
able to quickly learn the knowledge required as they move from
project to project. They learn on the job, from other team
members, and from colleagues with more experience. Senior
software engineers and designers mentor junior software engineers
and designers. They may receive training through work, online
training or university courses. They research and find information
on the web.

How Learning Occurs
Learning may be acquired:

• As part of regular work activity.
• From co-workers.
• Through training offered in the workplace.
• Through reading or other forms of self-study:

o at work.
o on worker's own time.
o using materials available through work.
o Using materials obtained through a professional association or union.
o using materials obtained on worker's own initiative.

• Through off-site training:
o during working hours at no cost to the worker.
o partially subsidized.

18 of 19

19 of 19

J. Other Information
In addition to collecting information for this Essential Skills Profile, our interviews with job incumbents also asked
about the following topics.

Physical Aspects
Mostly sitting.

Attitudes
Software engineers and designers need to be fast learners, have good research skills, and a creative approach to
problem solving. They should have a positive attitude toward working and communicating as a team and have the
ability to work with people at all levels. They need to be able to work under pressure and meet deadlines.

Impact of Digital Technology
All essential skills are affected by the introduction of technology in the workplace. Software engineers and
designers’ ability to adapt to new technologies is strongly related to their skill levels across the essential skills,
including reading, writing, thinking and communication. Technologies are transforming the ways in which workers
obtain, process and communicate information, and the types of skills needed to perform in their jobs. In particular,
software engineers and designers need enhanced digital skills to work with rapidly changing computer
technologies. For instance, they need designing and troubleshooting skills to write and edit code, and use software
and platforms to manage and develop files and programs. They also require the necessary skills to solve potential
problems to client satisfaction and manage project tasks and deadlines. New developments in network technology
require these workers to continually enhance their skills in order to keep current.

Technology in the workplace further affects the complexity of tasks related to the essential skills required for this
occupation. Software engineers and designers need the skills to use increasingly complex and specialized software
and platforms. For example, they use TFS and IDE to write source code. On the other hand, the use of technology
to research information and communicate with others in the field makes it easier for workers to find solutions to
issues.

K. Notes
This profile is based on interviews with job incumbents across Canada and validated through consultation with
industry experts across the country.

For information on research, definitions, and scaling processes of Essential Skills Profiles, please
consult the Readers' Guide to Essential Skills Profiles.

